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Abstract. Rescaled range analysis has been extensively used as a technique for characterising fi-
nancial time series. In this paper we focus on the Hurst exponent characterisation of time series as 
a framework for describing some of the properties of financial time series. The objective is to es-
tablish, by estimating Hurst exponents, if stock returns scale differently for different horizons and 
for different return frequencies. The returns on stocks for ten real-life data sets taken from the 
NYSE and fifteen artificially generated time series were analysed. The frequency of data impacts 
only short memory processes. High frequency minute data indicate antipersistent behaviour, whilst 
medium frequency data are somewhat persistent. As the length of the return period increases, the 
properties of the time series begin to converge to their original pattern at zero lag. For long returns 
the frequency of data makes no impact on the process memory.  
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1. Introduction 
Two questions continue to keep on intriguing researchers and practitioners dealing with 
time series, and they are: do financial time series have embedded memory, and if so, 
does this memory exhibit any sensitivity to data frequency. Many studies, as shown be-
low, have attempted to answer these two and numerous other closely related questions. 
Some of the answers are consistent, the others are very much contradictory. This paper 
will attempt to provide answers, although only partially, related to the process memory 
for only two different frequencies of stock return data.  
 
One way to describe long memory processes is by analysing their autocorrelation func-
tions. A long memory process is characterised by a hyperbolic decay in autocorrelation 
coefficients and a short memory process is characterised by an exponential decay in 
autocorrelation coefficients. However, rather than using autocorrelations, or correspond-
ing frequency analysis, we’ll focus on rescaled range analysis, or more specifically, the 

Hurst exponent. The technique pioneered by Hurst, and contextualised by Mandelbrot, 

is a very robust technique, insensitive to frequency distribution and potential non-

stationarity of the data. Empirical evidence indicates that high frequency financial data 

are more likely to be stationary, whilst low frequency data are more likely to be non-

stationary. This paper will examine both types of data. The use of appropriate tech-

niques capable of handling both types of data is important. 

 

 

2. Objectives 
The objective of this paper is to establish whether the data frequency affects process 

memory. Specifically, it will be examined whether medium frequency data (daily stock 

returns) exhibit different process memory from very high frequency data (minute stock 

returns).  

 

In order to achieve this, an experimental approach has been adopted. Ten time series of 

sufficient length (at least five thousand data points) were used. All the time series repre-

sent actual real-life stock closing values. From these closing values, the returns were 

calculated for different time horizons. Arbitrarily, the return horizons include 1, 100, 

500 and 1,000 periods (lags)
1
. Equally, a selection of stocks from different industry sec-

tors was made, representing: energy, IT, food and beverage, pharmaceutical and retail 

sectors. In addition to this, several artificial series were generated for benchmarking, as 

described further below. All the time series are described in greater detail in section 6. 

 

As all the time series used in this paper are of reasonable length (depending on the se-

ries, between 5,400 and 10,400 observations), the use of classical rescaled range analy-

sis for estimating the Hurst exponent seems appropriate
2
. To provide additional ration-

ale for this decision, a brief overview of the most important literature in this domain is 

surveyed, followed by a short introduction of the rescaled range analysis and the Hurst 

exponent. 

 

                                                           
1 Returns for 1,000 days correspond to 2.7 years and for 1,000 minutes to 16.7 hours, i.e. 2.5 days. 
2 For implications of the series length on calculating the Hurst exponent, see Ambrose, B. W., E. W. An-
cel, et al. (1993). "Fractal Structure in the Capital Markets Revisited." Financial Analysis Journal(May-
June): 73-77. 



   3

 
3. Current state of affairs 
Generally, there seems to be a lack of consensus on how to characterise various finan-
cial time series. Partially this is due to the fact that different categories of series at dif-
ferent time frequencies are examined, and they do not necessarily behave in a uniform 
way. Some studies scrutinise the actual stock values or the trading volume, although 
most of the studies focus on stock returns, which is what this paper will do, and we’ll 

define the returns shortly. Another often considered category is stock volatility, which 

could be expressed as the squared returns, or the absolute returns, or even as the logs of 

squared returns. A number of models are then used by different researchers to character-

ise financial time series, and some of the examples are: Gaussian distribution, Levy 

flight, various leptokurtic distributions, ARCH/GARCH models and an almost infinite 

number of their derivatives such as IGARCH, EGARCH, SWARCH, FIGARCH, etc., 

depending on what has been modelled. What follows is a brief overview of some of the 

work published in this domain. 

 

Peters (1989; 1992) picked up on some early Mandelbrot hypotheses (to be described 

shortly) and used the so-called rescaled range (R/S) analysis to explore the question of 

persistence in time series. This was followed shortly by Ambrose, Ancel et al. (1993) 

who questioned some of the general claims made (those of Peters in particular) about 

persistent behaviour in monthly time series. They concluded that there is no long-term 

deterministic structure. The issue they challenged in particular was inadequate time se-

ries length as well as the inappropriate selection of the subset for the calculation of the 

Hurst exponent. However, the approaches they adopted to R/S analysis (referred to as F-

Hurst and G-Hurst) give identical results for long time series (more than 2
10

 observa-

tions). 

 

In order to add rigour to this area, Lo (1991) suggested a test, based on R/S analysis and 

the Hurst exponent, to establish the presence of long term dependencies in time series. 

According to Lo, classical R/S analysis is incapable of distinguishing between short-

range and long-range dependencies in the time series. In computational terms, Lo’s 

modified rescaled range method makes minor changes when compared to the original 

rescaled range method. The modified method divides the range with the standard devia-

tion as well as with the weighted autocovariances up to some lag q. Pagan (1996) con-

firmed that the choice of q is critical for results. A small q favours the alternative hy-

pothesis (presence of long memory) and a large q is more in favour of the null 

hypothesis, making the test somewhat biased. 

 

These few examples represent a great body of effort made during the early nineties on 

this front. A good review of a number of early research attempts in this domain is given 

by Brock and deLima (1995). Since their monograph has been made available, a num-

ber of other researchers have published their findings. Some of the more recent and 

prominent sources are listed below. 

 

Mantegna & Stanley (1995) analysed the S&P 500 index and found that, in support of 

Mandelbrot’s early claims
3
, the Levy distribution matches their data, although they 

                                                           
3 Mandelbrot suggested a leptokurtic Levy distribution (which complies with the “fat tail” property of 

many stock price distributions). 
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found deviations of the tail of the distribution. Although the Levy distribution has an in-
finite second moment, in the case of their data, a finite second moment was present, ex-
plaining some of the deviations. They also examined a GARCH model and reported that 
it showed different properties from the observed data. 
 
Evertsz (1995) analysed high frequency (intra-day) DEM-USD foreign exchange rates 
and German DAX daily closing data4. Unlike Mantegna & Stanley, he rejected the pos-
sibility that the Levy distribution models his data sets. He also found no evidence of 
change in distribution for various returns, in line with the changes in the Hurst expo-
nent. 
 
Hiemstra and Jones (1997) analysed daily returns of 1,952 common stocks and found 
that long memory is not a widespread characteristic of common stocks. Goodhart and 
O’Hara (1997), in a slightly different context, analysed whether high frequency data 

will reveal limitations to the efficiency of markets and concluded that, while asset mar-

ket prices exhibit nonlinearities, they are not chaotic. 

 

Bisaglia and Guegan (1998) compared a number of different methods (including the 

classical R/S method) for estimating the Hurst exponent. They used intra-day exchange 

rates DEM/FRF from 1 September 1994 to 1 September 1995, examined at different 

frequencies: (i) every hour (5904 observations), (ii) every 20 min (14819 observations) 

and (iii) every 10 min (24827 observations). They scrutinised log differenced data (al-

though the absolute returns and square returns as volatility estimators were also exam-

ined). All three series show on average H≈0.5. In fact classical R/S method show 

H≈0.46, implying small anti persistence. 

 

Harrison, Yu et al (1999) used exceptionally long time series of the daily S&P Compos-

ite Price Index and reported the presence of deterministic chaos. 

 

Stanley (2000) quotes several papers, in particular Plerou, Gopikrishnan, et al who, after 

analysing 40 million data points from the US stock markets, found evidence that there is 

no Levy regime in their data, contrary to what Mandelbrot and later Mantegna hypothe-

sised. 

 

Lobato and Velasco (2000) examined trading volume and return volatility (not stock re-

turns as in this paper), but in the frequency domain. Specifically, they used 30 stock 

data from DJIA (Dow Jones Industrial Average), each, with the exception of three, con-

taining 8,180 daily observations. They discovered that the trading volume exhibits long 

memory. The volatility also exhibits the same long memory, but this component is dif-

ferent from the volume one. 

 

Meade (2002), on the other hand, analysed predictability of an AR-GARCH model and 

found it more appropriate than non-linear models, implying that the high frequency ex-

change rate data he analysed follows the GARCH model. 

 

                                                           
4 As an a-priori remark, note that for high frequency data he estimated H=0.45 and for daily data H=0.54, 
which resembles greatly the findings  reported in this paper. 



   5

Strozzi (2002) used a variety of data sets, namely: intra-day foreign exchange spot rates, 
bid and ask quotes for precious metals, transaction prices from European future con-
tracts and two stock indices (DJIA and S&P 500). All the data sets were high frequency 
(half-hourly). The reported Hurst exponents for all the series, without exception, were 
very high (almost 1) indicating long process memory. 
 
Small and Tse (2003) explored three different daily data sets and rejected the random 
walk model altogether in favour of the hypothesis of deterministic nonlinear dynamics 
(although not necessarily that of chaotic behaviour). Deterministic structure cannot be 
modelled with conditional heteroscedastic processes, and they reject the usefulness of 
all GARCH models in modelling inter-day series. The conclusion is that financial series 
are deterministic but “swamped by stochastic behaviour”

5
. If this is the case, then proc-

ess memory is by default embedded in such time series. 

 

The brief overview that proceeded indicates that a number of papers, implicitly or ex-

plicitly, tried to establish the presence of long-term memory in financial time series. Not 

surprisingly, most of them reported contradictory findings, depending on circumstances. 

The causes of contradictory findings could be summarised as follows: the length of the 

data set being insufficient or inconsistent; the frequency of data sampling varying from 

study to study; some of the analyses covering stock returns, the others volatility and 

some others cross correlations between the volume and value; some reports focusing on 

stocks from only one industry sector, or just on aggregate series (indices); different time 

horizons being used to calculate the returns in different studies, etc. All in all, a number 

of issues could obscure findings and there is no consensus or a general model that could 

embrace all aspects of financial time series characterisation. Findings in one area, appli-

cable to a specific data set, are not universal. 

 

 

4. The background of rescaled range analysis 
The origins of rescaled range analysis go back to H.E. Hurst’s interest in the storage ca-

pacity of water reservoirs and his seminal paper from 1951 (Hurst 1951). Hurst devoted 

a substantial amount of time, energy and intellect to establishing how to compute the 

correct storage required in the Great Lakes of the Nile river basin. His objective was to 

determine the capacity of a reservoir guaranteeing a minimum discharge when the water 

intake is low. To determine the optimum capacity, he examined the maxima and minima 

of a number of reservoirs over a number of periods and concluded that there is an opti-

mum range required to maintain the average discharge. When this range was measured 

against different time horizons, he discovered strong scaling properties. This scaling 

property is estimated as the slope of the line on a log plot showing the changes in the re-

scaled range
6
 versus the number of cases used for the range. Contrary to his expectation 

that this slope should be equivalent to 0.5 (which would be normal for random events), 

he discovered that the number is around 0.7. In other words, the scaling of certain natu-

ral phenomena (reservoirs included) does not follow chance, but shows an increasing 

amount of long process memory and persistence, as in this particular case. 

                                                           
5
 Description of this stochastic behaviour is vague and implies either “apparently random” behaviour or 

possibly even extremely high dimensional dynamics. 
6
 Range is a function of deviations from the mean. Rescaling the ranges means that they are divided by 

their appropriate standard deviation, i.e. R/σ. 
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Mandelbrot based some of his hypotheses on Hurst’s work and made a breakthrough in 

1965 (Mandelbrot 1983). He renamed the rescale analysis exponent as the Hurst expo-

nent and changed its original notation from K, as used by Hurst, to H. More impor-

tantly, he linked it with the fractal dimension and established that they are related as     

D = 2 - H, where D is the fractal dimension. The real breakthrough came from his hy-

pothesis that the assumption of normally distributed price variations should be rejected, 

although, as we saw above, there is no consensus as to which distribution it should be 

replaced with. 

  

The Hurst exponent, as a technique, makes no assumption on the frequency distribution 

of the data and as such is a valuable tool. The Hurst exponent can takes values 0<H<1. 

For H=0.5, the series is comparable to a white noise process. For H close to zero, the se-

ries is random and quite ‘jumpy’, showing a tendency for every observation to move 

dramatically either in the opposite direction from the previous observation or continue 

in the same direction in a very accentuated manner. For H close to unity, the series is 

still random but much smoother. It tends to jump up and down over much larger inter-

vals. This kind of series is said to have an element of persistence built into it. The Hurst 

exponent, therefore, indicates both how rough the series is and the length of its memory.  

 

 

5. Method of estimating the Hurst exponent 
We indicated that there is a connection between the Hurst exponent and the fractal di-

mension. However, there is also a relationship between the Hurst exponent and the 

spectral density exponent β. Spectral densities Sx show the following relationship: 

 

x f

1
S ∝       (1) 

 

where, f are the frequencies and β=2H+1. This indicates that the Hurst exponent can 

also be estimated from the power spectrum of the series
7
. A number of other ways are 

known for estimating the Hurst exponent. Some are more conventional, such as a modi-

fied periodogram spectral estimator or an autoregressive spectral estimator, the others 

are more specialised, such as dispersion analysis or via the fractal dimension. Cannon, 

Percival et al. (1997), for example, used three scaled windowed variance (SWV) meth-

ods for estimating the Hurst exponent. In principle, an alternative to the R/S method for 

estimating the Hurst exponent is necessary if the time series is not of sufficient length
8
. 

As the time series selected in this paper are invariably greater than N=2
12

 (some are 

N>2
13

), the original Hurst R/S method was deemed to be appropriate. A software pack-

age called Fractan (release 4.3), freely available from the Internet, was used
9
 and it cal-

culates the Hurst exponent very much as prescribed by Hurst.  

 

                                                           
7 For H=0.5, for example, we get ordinary Brownian motion, often also referred to as 1/f2 noise. 
8 Cannon, Percival et al. (1997) reported inconsistencies only with the time series of N<29 
9 Fractan was created by Vyacheslav Sychyov and is available from <http://fractan.boom.ru/soft.htm>.  
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If xt are observations in a time series, x  the mean, S the biased standard deviation and a 
time series fragment is of length τ, the time series can be rescaled for different lengths 
of the fragment in the following way: 
 

∑
=

=
1t

tt� x
1

x       (2) 

 

∑
=

−=
1t

2
t�tt�
)x(x

1
S      (3) 

 
For an interval τ, which is 1 ≤ τ ≤ N, x τ,t is a local mean and Sτ,t is a local standard de-
viation. The cumulative sum of all the deviations in an interval from the local mean is: 
 

  ∑
=

−=
1t

t�tt�
)x(xZ      (4) 

 
From this, a local range can be calculated as: 
 

t�t�
minZmaxZR −=     (5) 

 
In order to make them comparable, the ranges are rescaled (normalised) by the local 
standard deviation and averaged for all identical intervals to decrease statistical variabil-
ity (Mandelbrot 2002). For all identical intervals with τ elements:  
  

( )
1t S

R1
R/S ∑

=

=      (6) 

 
As the interval τ changes, so does the expected rescaled value of R/S. Usually this scal-
ing property is expressed as: 
 

( )[ ] H
N cNR/SE ≅      (7) 

 
Where c is a constant and H is the Hurst exponent. The slope of the straight line that 
connects all ln(R/S)N and ln(N) is the estimate of the Hurst exponent. 
 
For proper random process following the Gaussian distribution H=0.5. This is consid-
ered a special case of Brownian motion. For all other values of H, the process is poten-
tially a fractional Brownian motion. More specifically, where 0 ≤ H < 0.5 the process is 
considered antipersistent and, where 0.5 < H ≤ 1 the process is persistent.  
 
 
6. Time series description 
In this paper the analysis was conducted using ten real-life financial time series. The 
data sets are stock movements taken from the New York Stock Exchange (NYSE). The 
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series consist of daily and minute closing values for BP, IBM, Coca Cola, Pfeizer and 
Wall Mart (Tickers symbols: BP, IBM, KO, PFE and WMT). The details for all 10 se-
ries are given in Table 1. All minute data cover Monday to Friday intra-day trading 
from 9.30-16.00. 
 
 
 
 
 
 
 
 
 
              Table 1: Five financial time series from the NYSE selected for analysis 
 
As indicated, rather than analysing the closing values of the stocks, the return values 
were calculated. If a stock price, at any point in time, is defined as Xt and ∆t is a change 
in time, then the price change is calculated as: 
 

t

t

t

t
�

t
t X

Z

X

XX
R =

−
= +      (8) 

 
As Zt/Xt ≈ log Xt+∆t - log Xt , if Zt/Xt is small, the value of Rt can be more efficiently ex-
pressed as: 
 

t
�

tt logXlogXR −= +       (9) 

 
This was the method adopted for calculating returns. In this paper specific returns were 
calculated for periods (lagged values) of 1, 100, 500 and 1,000 observations.  
 
To provide a benchmark and illustrate how the Hurst exponent behaves, three initial 
data sets, representing different classes of processes, were generated artificially and they 
are: a white noise process, a Wiener process10 and the Lorenz attractor. For all three se-
ries 8,000 observations were generated. The white noise process was generated on Excel 
using the RAND() function. The Wiener process was rendered as integrated white noise 
process. The Lorenz attractor, representing chaotic processes, was generated using dif-
ference equations11 with the following parameter values: 
 

dx/dt= -10(x +y)        (10) 
dy/dt= 28x -y -xz       (11) 
dz/dt= -8/3z +xy.        (12) 
 

For these three simulated series, artificial ‘returns’ were also calculated for identical 

time periods as for the stock exchange data, i.e. for 1, 100, 500 and 1,000 lags. 

 

                                                           
10 Brownian motion with Markov characteristics, earlier referred to as fractional Brownian motion (fBm) 
11

 Only ‘x’ variable evolving in a time window has been used 

Stock values BP IBM Coca Cola Pfeizer Wall Mart
Daily closing values

Start 03-Jan-77 02-Jan-62 02-Jan-70 04-Jan-82 25-Aug-72

Finish 09-May-03 09-May-03 09-May-03 09-May-03 09-May-03

No of observations 6653 10405 8423 5391 7698

Minute closing values
Start 22-Apr-03 22-Apr-03 22-Apr-03 22-Apr-03 22-Apr-03

Finish 05-May-03 05-May-03 05-May-03 05-May-03 05-May-03

No of observations 5458 5862 5473 5473 5473
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7. The Hurst exponent estimates 
The values of the Hurst exponent estimated for all three simulated time series are given 
in Table 2. 
 
As expected, a white noise process shows the Hurst exponent value at around 0.5 
(0.5153 ±0.14 in this case) and the Wiener process’ Hurst exponent is close to 1 (0.9667 

±0.11). On the other hand, the Hurst exponent for the Lorenz attractor is 0.6282 ±0.17. 

These facts do not reveal anything new and are used only as a benchmark. The real 

question is: what happens to the Hurst exponent for the returns calculated at different 

lags for each of these series? 

 

 

 

 

 

Table 2: Hurst exponents for three artificially generated time series and their 

lagged log differences (returns) 

 

In the case of the Lorenz attractor, the Hurst exponent drops dramatically for lag one, 

and it gradually recovers towards its original value, as the number of lags increases. A 

white noise process shows identical behavioural properties (a five-fold initial drop in the 

Hurst value). The Wiener process, which resembles most real-life stock exchange data, 

shows the same long-term tendency, i.e. for long lags it will reach its original Hurst ex-

ponent. However, for very short lags (lag of one) its Hurst value is only half its original 

value and it is on a comparable level to the white noise Hurst exponent for zero lag. 

 

How should these results be interpreted from the perspective of process memory? Es-

sentially, for very long lags (returns), all three processes resume their initial levels of 

process memory, i.e. a white noise process continues to show absence of any memory, 

the Weiner process shows great persistence and the Lorenz attractor shows some limited 

persistence. For very short lags (returns for just one period) the pattern is less uniform. 

The chaotic process (the Lorenz attractor), just like a white noise process, tends to be-

come very antipersistent. The Wiener process, on the other hand, gets reduced to a 

process that looks like a white noise process. 

 

What happens with the returns for real-life stock exchange time series? Estimated val-

ues of Hurst exponents are given in Table 3. 

 

The Hurst exponent for all ten closing stock value series (five daily and five minute 

time series) shows very high values, resembling a Wiener process. We mentioned above 

that the short-term returns of a Wiener process behave like white noise with H≈0.5. The 

expectation is that the short-term returns for both minute and daily stock values for only 

one period will also behave just like a white noise process. 

 

A majority of the daily returns for lag one show the Hurst exponent higher than 0.5. One 

return series (WMT) shows even more radical departure in the positive direction from 

0.5. In this selection of stocks, the IBM daily returns are the only ones exhibiting anti-

persistent behaviour. Although there is not sufficient evidence to say, at least on the ba-

Hurst exponents Actual Lag 1 Lag 100 Lag 500 Lag 1000
White noise 0.5153 0.1064 0.2476 0.4284 0.5232
Wiener 0.9667 0.5186 0.7238 0.8748 0.9921
Lorenz 0.6282 0.1001 0.2802 0.5419 0.6174
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sis of this sample, that single day returns are fundamentally different from a white noise 
process, it remains a fact that the Hurst exponent for the majority of these series is on 
the upper side of the value of 0.5.  
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Hurst exponent values for daily and minute returns separated 1, 100, 
500 and 1,000 periods 

 
A majority of the minute returns for lag one, on the other hand, have the Hurst exponent 
lower than 0.5 (with the exception of BP), implying some limited process memory, i.e. 
the antipersistent type of memory. Clearly there is a difference between minute and 
daily short-term returns. To put it very informally, today’s return on stocks is in general 

faintly positively correlated with yesterday’s return, whilst this minute’s return on 

stocks is more likely to ‘overreact’ by either going in the opposite direction from the re-

turn recorded just a minute ago, or continuing at some larger order of magnitude in the 

same direction.   

 

For very long returns, in our case 1,000 periods, both daily and minute return series re-

sume the shape of their original time series, showing 0.9<H<1. The recovery path for 

the average Hurst exponent from zero to 1,000 lags in Fig. 1 looks very much like the 

one for the Wiener process. The recovery rate of the Hurst exponents for daily returns is 

marginally different from the recovery rate of the Hurst exponents for minute returns. 

Daily returns seem to show a somewhat higher level of persistence than minute returns, 

although they are both recovering ultimately towards their original level of the Hurst 

exponent. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Average daily and minute Hurst exponents for corresponding five return series 

shown as a function of changes in return horizons (lags) 

Hurst values Actual Lag 1 Lag 100 Lag 500 Lag 1000
Daily values
BP 0.9652 0.50905 0.68770 0.89042 0.96000
IBM 0.9324 0.43335 0.87070 0.86155 0.89970
KO 0.9492 0.55218 0.84360 0.94931 1
PFE 1 0.52612 0.69930 0.87243 0.95040
WMT 0.9668 0.61411 0.82730 0.88602 0.93330
Average daily H 0.96272 0.52696 0.78572 0.89195 0.94868
Minute values
BP 1 0.50853 0.68040 0.92881 0.97940
IBM 0.9193 0.43742 0.61900 0.82842 0.92960
KO 1 0.43901 0.64530 0.90459 0.91080
PFE 1 0.46158 0.74290 0.90050 0.97510
WMT 0.9327 0.49333 0.62020 0.82782 0.97040
Average minute H 0.97040 0.46797 0.65685 0.87803 0.95306

0.0
0.1
0.2
0.3
0.4
0.5
0.6
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8. Conclusions 
We set out to determine what kind of process memory is associated with daily and min-
ute stock value returns. A limited sample of only five daily and five minute stock series 
from the NYSE (although varied from the industry point of view) was selected. The se-
ries were long enough to warrant the use of conventional R/S analysis to estimate Hurst 
exponents, which were used as a basis for the analysis. We concluded that experimental 
data indicate that there is a difference in memory properties between the medium and 
high frequency data.  
 
Although the estimated Hurst exponents implied that both the single day stock returns 
and the single minute returns have some limited memory, the nature of this process 
memory is of the opposite character. Whilst the single day returns show some persis-
tence, the single minute returns clearly show antipersistence. This was informally 
articulated as a rule according to which today’s return tends to show an inclination to 

pick up yesterday’s trend, whilst this minute’s return is more likely to go in the opposite 

direction from the return recorded just a minute ago. For the long-term returns (calcu-

lated for lags of 1,000 observations) there is no difference between daily and minute re-

turns and they both show similar properties to the original series from which they were 

derived. In other words, the frequency of data has no impact on long process memory, 

but has an impact on short process memory. 

 

Using a very limited tool set (in this case the R/S analysis and estimating Hurst expo-

nents) and only several experimental data sets some interesting findings are suggested. 

However, these findings, as interesting as they are, need to be validated in a more robust 

way using much larger sample of stocks. 
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